沈阳化工大学计算机科学与技术学院;辽宁省化工过程工业智能化技术重点实验室;
当前众多目标检测模型过于复杂,难以实现将寄生卵的检测和分类任务部署在移动设备,就此该文研究探讨了一种融合改进的YOLOv5n和通道剪枝的算法。选择YOLOv5是由于YOLOv5的轻量化以及较高的精确度,能够达到该文的实验目的。该文采用融合C3_Faster模块和RepConv重参数化模块对YOLOv5n的BackBone中的所有C3模块和Neck网络中部分卷积模块进行替换,C3_Faster模块通过PConv减少卷积操作加快网络模型推理速度,RepConv重参数化模块在训练阶段实行多分支结构增强特征提取能力,在验证阶段实行单分支结构加快检测速度,同时在改进后的YOLOv5n模型上进行稀疏训练和通道剪枝,通过减少模型中的冗余通道来降低模型复杂度、减少参数数量、提高检测效率和降低模型权重。在寄生卵检测和分类任务对比实验中,该方法与YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv8n和SSD目标检测算法相比,在检测精度略微下降的情况下,在GFLOPs、FPS、参数数量以及模型权重上具有相对优势。经过实验验证,模型检测精度保持98.3%的同时能够更方便更容易部署在性能不高的移动设备。该文为基于YOLOv5n的寄生卵检测和分类任务在实用性方面提供了一种有效的解决方案。
323 | 0 | 76 |
下载次数 | 被引频次 | 阅读次数 |
[1] HUO Y,ZHANG J,DU X,et al.Recognition of parasite eggs in microscopic medical images based on YOLOv5[C]//2021 5th Asian conference on artificial intelligence technology (ACAIT).Haikou:IEEE,2021:123-127.
[2] 侯剑平,王超,赵万里,等.基于深度学习的白带显微图像细胞识别[J].计算机应用与软件,2021,38(9):232-238.
[3] 李搏.基于迁移学习的寄生虫卵识别模型的研究与应用[D].镇江:江苏大学,2021.
[4] 蔡康文.CellScanner:一种基于YOLO与RESNET的高精度可迁移细胞识别模型[D].上海:上海师范大学,2023.
[5] 谭鑫平,高志辉,韩航迪,等.基于改进YOLOv5的荧光图像细胞智能检测研究[J].半导体光电,2023,44(5):709-716.
[6] ZHANG Z,DENG Z J,WU Z P,et al.An improved EIoU-Yolov5 algorithm for blood cell detection and counting[C]//2022 5th international conference on pattern recognition and artificial intelligence (PRAI).New York:IEEE,2022:989-993.
[7] 周启宸,王伯超.基于改进YOLOv7的太阳能电池片表面缺陷检测[J].计算机应用,2023,43(S2):223-228.
[8] 卢媛媛,张守京,郑林青,等.基于改进YOLOv5的织物瑕疵检测方法[J].毛纺科技,2024,52(5):80-86.
[9] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[C]//IEEE conference on computer vision and pattern recognition (CVPR).Seattle:IEEE,2020:1-17.
[10] ZHAO J Q,ZHANG X H,YAN J W,et al.A wheat spike detection method in UAV images based on improved YOLOv5[J].Remote Sensing,2021,13:3094-3095.
[11] CHEN J,KAO S,HE H,et al.Run,don't walk:chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR).New Orleans:IEEE,2023:12021-12031.
[12] SZEGEDY C,LIU W,JIAY Q,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR).Boston:IEEE,2015:1-9.
[13] HE Y,ZHANG X,SUN J.Channel pruning for accelerating very deep neural networks[C]//Proceedings of 2017 IEEE international conference on computer vision.Venice:IEEE,2017:1398-1406.
[14] 王海群,王炳楠,葛超.重参数化YOLOv8路面病害检测算法[J].计算机工程与应用,2024,60(5):191-199.
[15] DING X,ZHANG X,MA N,et al.RepvVGG:making vgg-style convnets great again[C]//2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR).Los Angeles:IEEE,2021:13733-13742.
[16] LIU Z,LI J,SHEN Z,et al.Learning efficient convolutional networks through network slimming[C]//International conference on computer vision.Venice:IEEE,2017:2736-2744.
[17] 向国徽.自动驾驶场景下的行人检测研究[D].重庆:重庆理工大学,2019.
[18] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European conference on computer vision (ECCV).[s.l.]:Springer,2016:21-37.
[19] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets newstate-of-the-art for real-time object detectors[C]//2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR).Seattle:IEEE,2023:7464-7475.
基本信息:
DOI:10.20165/j.cnki.ISSN1673-629X.2024.0295
中图分类号:R446.5;TP391.41;TP18
引用信息:
[1]王杰,马纪颖.融合改进的YOLOv5n和通道剪枝的寄生卵检测和分类[J].计算机技术与发展,2025,35(02):146-152.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0295.
基金信息:
辽宁省自然基金项目(2022-MS-291); 国家外国专家项目计划(G2022006008L); 辽宁省教育厅基本科研项目(LJKMZ20220781)