175 | 0 | 27 |
下载次数 | 被引频次 | 阅读次数 |
供应物资受限下多供应点、多需求点、多种类的应急物资调度需要保障配送高效的同时提升各需求点的满足度。因此,通过建立以运输成本和需求满足度为目标的调度模型,设计进化学习算法(ELA)提升模型的求解效果和精度,给出高效的调度方案,引入转运点进一步降低各需求点的运输成本从而优化调度方案。实验分析表明,第一阶段提出的决策变量映射编码避免产生无效的分配方案加快了求解速度,设计的ELA算法能较大程度地降低运输成本并提高需求满足度,与传统GSA相比,给出的调度方案使得运输成本降低13.6%,需求满足度提高18.4%。第二阶段运用节约法优化后,双目标调度方案中将调度方案的运输成本再降低11.1%。结合实际调度需求,给出的两种方案中双目标调度方案适用于降低运输成本的实际需求,而最大需求满足度方案则对提升需求满足度更有帮助,两种方案为实际调度需求提供了更有价值的参考意义。
Abstract:Under the constraint of supplying materials, the dispatching of emergency materials with multiple supply points, multiple demand points, and multiple types needs to guarantee the high efficiency of distribution and improve the satisfaction degree of each demand point at the same time. Therefore, by establishing a scheduling model with transportation cost and demand satisfaction as the objectives, we design an evolutionary learning algorithm(ELA) to improve the model's solution effect and accuracy, give an efficient scheduling plan, and introduce transshipment points to further reduce the transportation cost of each demand point so as to optimize the scheduling plan. The experimental analysis shows that the decision variable mapping encoding proposed in the first stage accelerates the solution speed by avoiding the generation of ineffective allocation schemes, and the designed ELA can reduce the transportation cost and improve the degree of demand satisfaction to a larger extent, and the given scheduling scheme reduces the transportation cost by 13.6% and improves the degree of demand satisfaction by 18.4% compared with the traditional GSA. In the second stage, after optimization using the savings method, the transportation cost of the scheduling plan is further reduced by 11.1% in the bi-objective scheduling plan. Combined with the actual scheduling demand, the two given schemes, the dual-objective scheduling scheme is suitable for the actual demand of reducing transportation cost, while the maximum demand satisfaction scheme is more helpful for improving the demand satisfaction, and the two schemes provide more valuable references for the actual scheduling demand.
[1] 王付宇,王欣蕊,贺昕,等.考虑需求紧迫度和综合满意度的应急物资选址-调度问题[J].系统工程,2024,42(1):37-50.
[2] 袁瑞萍,王伟,李俊韬,等.不确定性条件下多阶段应急物资多式联运调度研究[J].运筹与管理,2023,32(6):33-39.
[3] 卢建锋,韩霜,赵佳虹.考虑缺失风险的连续消耗型应急物资调度优化研究[J].公路交通科技,2023,40(2):246-254.
[4] 孙昌玖,裴虹,刘丹,等.考虑横向转运的震后应急物资协同调度研究[J].武汉理工大学学报:信息与管理工程版,2018,40(4):389-395.
[5] WANG Y,PENG S,XU M.Emergency logistics network design based on space–time resource configuration[J].Knowledge-Based Systems,2021,223:107041.
[6] 曹策俊,李从东,屈挺,等.救援物资跨区域调度双层规划模型—考虑幸存者感知满意度和风险可接受度[J].管理科学学报,2019,22(9):111-126.
[7] 王茂萍,潘大志.求解集值折扣{0-1}背包问题的改进动态规划算法[J].计算机应用与软件,2022,39(9):274-277.
[8] 于静,徐哲,谢芳.带有活动重叠的项目调度问题新算法:分支定界法[J].运筹学学报,2023,27(1):115-126.
[9] 王移民,雷德明.求解分布式两阶段混合流水车间调度的反馈人工蜂群算法[J].控制理论与应用,2024,41(6):1137-1146.
[10] 汪勇,李文凯,艾学轶,等.考虑目标偏好的应急物资调度方案优化方法[J].统计与决策,2023,39(21):184-188.
[11] WANG L,YANG Y,XU L,et al.A particle swarm optimization-based deep clustering algorithm for power load curve analysis[J].Swarm and Evolutionary Computation,2024,89:101650.
[12] CHAUHAN P R,SAHA B B,TYAGI S K.Genetic algorithm based multi-objective optimization of an adsorption cooling system with passive heat recovery mechanism[J].International Communications in Heat and Mass Transfer,2024,158:107848.
[13] SUN Haibing,WANG Dong,LI Hanging,et al.An improved DV-Hop algorithm based on PSO and Modified DE algorithm[J].Telecommunication Systems,2023,82(3):403-418.
[14] DEY B,RAJ S,MAHAPATRA S,et al.A variegated GWO algorithm implementation in emerging power systems optimization problems[J].Engineering Applications of Artificial Intelligence,2024,129:107574.
[15] 方文婷,艾时钟,王晴,等.基于混合蚁群算法的冷链物流配送路径优化研究[J].中国管理科学,2019,27(11):107-115.
[16] 潘富强,曾成,马国红,等.一种融合改进A*算法与改进动态窗口法的AGV路径规划[J].传感技术学报,2023,36(1):68-77.
[17] MOHAMMED H,RASHID T.A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design[J].Neural Computing & Applications,2020,32(18):14701-14718.
[18] 汪勇,康澳明,艾学轶,等.一种具有制导机制的灰狼优化算法[J].统计与决策,2023,39(24):35-40.
[19] PANG X,CHEN C,TONG X,et al.Application of improved genetic algorithm and ant colony algorithm in multi-objective path planning[J].Journal of Physics:Conference Series,2023,2562(1):012011.
[20] XING H,WU H,CHEN Y,et al.A cooperative interference resource allocation method based on improved firefly algorithm[J].Defence Technology,2021,17(4):1352-1360.
[21] 李敬明,倪志伟,朱旭辉,等.基于佳点萤火虫算法与BP神经网络并行集成学习的旱情预测模型[J].系统工程理论与实践,2018,38(5):1343-1353.
基本信息:
DOI:10.20165/j.cnki.ISSN1673-629X.2024.0365
中图分类号:D63;TP18;F251
引用信息:
[1]王静,邹静静,汪勇.考虑转运的应急物资两阶段优化调度[J].计算机技术与发展,2025,35(04):37-44.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0365.
基金信息:
国家自然科学基金资助项目(71901167)